Simple GUI to receive bell signal as first trial for the door annunciator system
26.2.17

by Julian Rogers

bell receivel

version has reduced window size to fit on Pi 7" screen

This puts up some labels and a button on the screen

The label indicates when a bell signal has been received

The button goes red when this happens until it is pressed to reset

= = 3 3 3 S S S 3E

This runs on a Pi. The “bell” itself is running on a Pi Zero.

#remote ip address - enter your IP addresses

IP ZERO = "XXX.XXX.XXX.XXX"

IP THIS PI ="XXX.XXX.XXX.XXX"

THIS PORT = xXxX #enter your port for the computer running this program
BACKGROUND = "gray"

from tkinter import * #GUI

import datetime

import time

import socket #UDP

sock = socket.socket (socket.AF INET, socket.SOCK DGRAM)

create the root window
root = Tk()

modify the window

root.title ("BELL RECEIVE")

froot.geometry ("700x430")

root.configure (bg = BACKGROUND)

#root.attributes ('-fullscreen', True) #eliminates the title bar

w, h = root.winfo screenwidth(), root.winfo screenheight ()

°

root.geometry ("$dx%d+0+0" % (w, h))

create a frame
app = Frame (root)
app.configure (bg = BACKGROUND)

app.grid()
title lab = Label (app, text = "Bell Receiver Test", font = ("Arial Bold", 20), fg = "maroon",
title lab.grid(row = 1, column = 1, columnspan = 8)

blank lab = Label (app, bg = "gray")
blank lab.grid(row = 2, column = 1)

When a notification is received, the message is bounced back to the sender as confirmation.

bg = "gray")

reset but = Button(app, text = "Reset", font = ("Arial", 16), fg = "maroon", bg = "light blue")

reset but.grid(row = 3, column = 1)

def reset but reset():
reset _but.config(bg = "light blue")

reset but.config(command = reset but reset)

#use "Button" rather than "Label" to match look of "reset but"
received label = Button(app, text = "Waiting...", font = ("Arial", 16), fg = "maroon", bg =
received label.grid(row = 3, column = 2)

def do_stuff():
received = "Waiting..."

sock = socket.socket (socket.AF_INET, socket.SOCK_ DGRAM)
sock.bind ((IP_THIS_PI, THIS_PORT))
try:

sock.settimeout (1)

while True:

received, addr = sock.recvfrom(100)

if received:
sent = sock.sendto(received, addr)
reset but.config(bg = "red")

except socket.error:
received label.config(text = "error...")

"light blue")

received label.config(text = received)

calls a function after given time
def after(self, ms, func = None, *args):
"""call function after a given time"""
updates screen every 0.1 seconds
def task()
do_stuff ()
root.after (100, task)

calls the screen update every 0.1 seconds

root.after (100, task)

kick off the window's event-loop
root.mainloop ()

