
Simple GUI to receive bell signal as first trial for the door annunciator system
26.2.17
by Julian Rogers
bell_receive1
version has reduced window size to fit on Pi 7" screen
This puts up some labels and a button on the screen
The label indicates when a bell signal has been received
The button goes red when this happens until it is pressed to reset
When a notification is received, the message is bounced back to the sender as confirmation.
This runs on a Pi. The “bell” itself is running on a Pi Zero.

#remote ip address – enter your IP addresses
IP_ZERO = "xxx.xxx.xxx.xxx"
IP_THIS_PI ="xxx.xxx.xxx.xxx"

THIS_PORT = xxxx #enter your port for the computer running this program
BACKGROUND = "gray"

from tkinter import * #GUI

import datetime
import time
import socket #UDP
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

create the root window
root = Tk()

modify the window
root.title("BELL RECEIVE")
#root.geometry("700x430")
root.configure(bg = BACKGROUND)
#root.attributes('-fullscreen', True) #eliminates the title bar

w, h = root.winfo_screenwidth(), root.winfo_screenheight()
root.geometry("%dx%d+0+0" % (w, h))

create a frame
app = Frame(root)
app.configure(bg = BACKGROUND)
app.grid()

title_lab = Label(app, text = "Bell Receiver Test", font = ("Arial Bold", 20), fg = "maroon", bg = "gray")
title_lab.grid(row = 1, column = 1, columnspan = 8)

blank_lab = Label(app, bg = "gray")
blank_lab.grid(row = 2, column = 1)

reset_but = Button(app, text = "Reset", font = ("Arial", 16), fg = "maroon", bg = "light blue")
reset_but.grid(row = 3, column = 1)

def reset_but_reset():
 reset_but.config(bg = "light blue")

reset_but.config(command = reset_but_reset)

#use "Button" rather than "Label" to match look of "reset_but"
received_label = Button(app, text = "Waiting...", font = ("Arial", 16), fg = "maroon", bg = "light blue")
received_label.grid(row = 3, column = 2)

def do_stuff():
 received = "Waiting..."

 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 sock.bind((IP_THIS_PI, THIS_PORT))
 try:
 sock.settimeout(1)
 while True:
 received, addr = sock.recvfrom(100)
 if received:
 sent = sock.sendto(received, addr)
 reset_but.config(bg = "red")

 except socket.error:
 received_label.config(text = "error...")

 received_label.config(text = received)

calls a function after given time
def after(self, ms, func = None, *args):
 """call function after a given time"""

updates screen every 0.1 seconds
def task():
 do_stuff()
 root.after(100, task)

calls the screen update every 0.1 seconds
root.after(100, task)

#---
kick off the window's event-loop
root.mainloop()

